I I max

I max 1

I I max where, 1^1 is the maximum absolute eigenvalue of the Jacobian matrix of the ODEs.

With an example of batch distillation, Seader and Henley showed that the time step needed in implicit Euler's method was 200 times of that needed for explicit Euler's method. Stiffness Ratio

Quite often chemical engineering systems are encountered with widely different time constants, which give rise to both long-term and short-term effects. The corresponding ordinary differential equations have widely different eigenvalues. Differential equations of this type are known as stiff systems. Seader and Henley (1988) derived the expressions for maximum and minimum eigenvalues for the differential component mass balance equations related to intermediate plates and reboiler respectively.

Lj +kijVj ~ 2- for intermediate plates

for reboiler

The stiffness ratio, SR, is defined as:

Seader and Henley (1998) noted that for SR = 20, the system is not stiff, SR = 1000, the system is stiff and SR = 1,000,000, the system is very stiff.

4.5.3. Initialisation of the DAE System

The initialisation of variables in a system of equations is important. While, in systems of ODEs all of the state variables must be initialised, in DAE systems only some of the variables need to be initialised, which is the same as the number of differential variables for index one system. The other variables can be determined using the algebraic equations. It is inconvenient for the user to be required to initialise all of the variables as this might require the solution of a set of nonlinear algebraic equations. Pantelides (1988) developed a procedure for consistent initialisation of DAE systems. Readers are directed to this reference for further details.


D, Ld distillate flow rate (kmol/hr)

F feed flow rate in a continuous column or flow rate out of feed tank

accumulator and condenser holdup respectively (kmol) plate, reboiler and feed tank holdup respectively (kmol) Liquid, vapour enthalpy (kJ/kmol)

liquid flow rate into the feed tank in MVC columns (kmol/hr) liquid, vapour flow rate, vapour boilup rate (kmol/hr) bottom product flow rate (kmol/hr)

number of plates, feed tank location, minimum number of plates nc no of components

Qc, Qr condenser or reboiler duty (kJ/hr)

K, k vapour-liquid equilibrium constant kr array of reaction rate constants r internal reflux ratio [0, 1]

rb internal reboil ratio [0, 1]

R, Rmin external reflux ratio, minimum reflux ratio

Rmin,u minimum reflux ratio (Underwood)

Rmin.g minimum reflux ratio (Gilliland)

t batch time (hr)

x, y liquid or vapour composition (molefraction)

x, y array of liquid or vapour composition (molefraction)

xa accumulated distillate composition (molefraction)

xD instant distillate composition (molefraction)

r reaction rate (1/hr)

An change in moles due to chemical reaction

Superscripts and subscripts i component number (1, nc)

j stage number (1, AO

k column section in MultiBD columns m vessel no. in MultiBD columns

Greek letters a relative volatility

<j> common root


Abrams, HJ., Miladi, M. and Attarwala, F.T., Preferable alternatives to conventional batch distillation, Presented at the IChemE Symposium Series no. 104, Brighton, 7-9 September (1987).

Albet, J., Le Lann, J.M., Joulia, X. and Koehret, B., In Proceedings Computer Oriented Process Engineering (Elsevier Science Publishers B.V., Amsterdam, 1991), 75.

Attarwala, F.T., and Abrams, HJ., Optimisation techniques in binary batch distillation. IChemE Annual Research Meeting, London, 1974.

Balasubramhanya, L.S. and Doyle III, F.J., J. Proc. Cont. 10 (2000), 209.

Barolo, M., Guarise, G. B., Rienzi S. A. and Trotta, A., Comput. ehem. Engng. 22 (1998), S37.

Bogacki, M.B.; Alejski, K. and Szymanowski, J., Comput. ehem. Engng. 13 (1989), 1081.

Bosley, J.R. Jr. and Edgar, T.F. In Proceedings of 5th International Seminar on Process Systems Engineering, Kyongju, Korea, 30 May-3 June, 1 (1994a), 477.

Bosley, J.R. Jr. and Edgar, T.F., J. Proc. Control. 4 (1994b), 195.

Boston, J.F., Britt, H.I., Jirapongphan, S. and Shah, V.B., In Foundation of Computer Aided Chemical Process Design, (Engineering Foundation, New York), II (1980), 203.

Converse, A.O. and Huber, C.I., 1EC Fund. 4 (1965), 475.

Christensen, F.M. and Jorgensen, S.B., Chem. Eng. J. 34 (1987), 57.

Christiansen, A.C., Jacobsen, E.W., Perkins. J.D. and Skogestad, S., On the dynamics of batch distillation: A study of parametric sensitivity in ideal binary columns. Presented at the AIChE Annual Meeting, Miami, USA, November, paper no. 184d, 1995.

Christiansen, L.J., Michelsen, M.L. and Fredenslund, A., Comput. chem. Engng. 3 (1979), 535.

Cuille, P.E. and Reklaitis, G.V., Comput. chem. Engng. 10 (1986), 389.

Diwekar, U.M., Batch Distillation: Simulation, Optimal Design and Control (Taylor and Francis, Washington, D.C., 1995).

Diwekar, U.M. and Madhavan, K.P., In Proceedings of World Congress III of Chemical Engineering., Tokyo. 4 (1986) 719.

Diwekar, U.M., Malik, R.K. and Madhavan, K.P., Comput. chem. Engng. 11 (1987), 629.

Diwekar, U.M. and Madhavan, K.P., IEC. Res. 30 (1991a), 713.

Diwekar, U.M. and Madhavan, K.P., Comput. chem. Engng. 15 (1991b), 833.

Domenech, S. and Enjalbert, M., Chem. Eng. Sei. 29 (1974), 1529.

Domenech, S. and Enjalbert, M., Comput. chem. Engng. 5 (1981), 181.

Egly, H. Ruby, V. and Seid, B„ Comput. chem. Engng. 3 (1979), 169.

Furlonge, H.I., Pantelides, C.C. and Sorensen, E., AIChE J. 45 (1999), 781.

Galindez, H. and Fredenslund, A., Comput. chem. Engng. 12 (1988), 281.

Gani, R., Ruiz, C.A. and Cameron, I.T., Comput. chem. Engng. 10 (1986), 181.

Gear, C.W., IEEE Trans. Circuit Theory, CT-18 (1971), 89.

Gonzalez-Velasco, J.R. and et al., IEC Res. 26 (1987), 745.

Greaves, M. A., Hybrid Modelling, Simulation and Optimisation of Batch Distillation Using Neural Network Techniques. Ph.D. Thesis, (University of Bradford, Bradford, UK, 2003).

Greaves, M.A., Mujtaba, I. M., Barolo, M., Trotta, A. and Hussain, M. A., Trans. IChemE, 81A (2003), 393.

Gritsis, D., The Dynamic Simulation and Optimal Control of Systems Described by Index Two Differential-algebraic Equations. PhD. Thesis, (Imperial College, University of London, 1990).

Hansen, T.T. and Jorgensen, S.B., Chem. Eng. J. 33 (1986), 151.

Hasebe, S., Abdul Aziz, B.B., Hashimoto, I. and Watanabe, T., In Proceedings IF AC Workshop, London 7-8 September (1992), 177.

Hasebe, S., Kurooka, T. and Hashimoto, I., In Proceeding of IF AC Symposium DYCORD'95, Danish Automation Society, Denmark (1995), 249.

Hindmarsh, A.C., Ais. Comput. Mach., Signam Newsl. 15 (1980), 10.

Hitch, D.M. and Rousseau, R.W., IECRes. 27 (1988), 1466.

Holland, C.D. and Liapis, A.I., Computer Methods for Solving Dynamic Separation Problems (McGraw-Hill Book Company, New York, 1983).

Huckaba, C.E. and Danly, D.E., AIChE. J. 6(1960), 335.

Kerkhof, L.H. and Vissers, H.J.M., Chem. Eng. Sei. 33 (1978), 961.

Li, P., Hoo, H.P. and Wozny, G„ Chem. Eng. Tech. 21 (1998), 853.

Logsdon, J.S. and Biegler, L.T., IECRes. 32 (1993), 700.

Mayur, D.N. and Jackson, R„ Chem. Eng. J. 2 (1971), 150.

Meadow, E.L., Chem. Eng. Prog. Symp. Ser. 59 (1963), 48.

Mori, H., Goto, H„ Yang, Z.C., Aragaki, T. and Koh, S., J. Chem. Eng. Japan. 28 (1995), 576.

Morison, K.R., Optimal Control of Processes Described by Systems of Differential and Algebraic Equations. PhD. Thesis, (Imperial College, University of London, 1984).

Mujtaba, I.M., Optimal Operational Policies in Batch Distillation. PhD Thesis, (Imperial College, University of London, 1989).

Mujtaba, I.M. and Macchietto, S. In Recent Progres en Ginie de Procedes, eds. Domenech, S. et al. (Lavoisier Techniche et Documentation, Paris, 1988) 2, 191.

Mujtaba, I.M. and Macchietto, S., Comput. chem. Engng. 16S (1992), S273.

Mujtaba, I.M. and Macchietto, S., Comput. chem. Engng. 17 (1993), 1191.

Mujtaba, I.M. and Macchietto, S. In Proceedings ADCHEM'94- IFAC Symposium on Advanced Control of Chemical Processes, Kyoto, Japan, 25-27 May, (1994), 415.

Mujtaba, I.M. and Macchietto, S., J. Proc. Control. 6 (1996), 27.

Mujtaba, I.M. and Macchietto, S., IECRes. 36 (1997), 2287.

Mujtaba, I.M. and Macchietto, S., Chem. Eng. Sei. 53 (1998), 2519.

Nad, M. and Spiegel, L., In Proceedings CEF 87, Sicily, Italy, April (1987), 737.

Naphtali, L.M. and Sandholm, D.P., AIChE J. 17 (1971), 148.

Pantelides, C.C., SIAM J Sei. Stat. Comput. 9 (1988), 213.

Pantelides, C.C., Gritsis, D., Morison, K.R. and Sargent, R.W.H., Comput. chem. Engng. 12 (1988), 449.

Reid, R.C., Prausnitz, J.M. and Sherwood, T.K., The Properties of Gases and

Liquids (3rd ed., Mc-Graw Hill Book Company, 1977). Reuter, E., Wozny, G. and Jeromin, L., Comput. ehem. Engng. 13 (1989), 499. Ruiz, C.A., In Proceedings ofCHEMDATA 88, 13-15 June, Sweden, (1988), 330. Robinson, C.S. and Gilliland, E.R., Elements of Fractional Distillation, (4th ed.,

McGraw Hill, New York, 1950). Robinson, E.R., ChemEng. Sei. 24 (1969), 1661. Robinson, E.R., Chem Eng. Sei. 25 (1970), 921.

Seader, J.D. and Henley, E.J., Separation Process Principles (John Wiley & Sons, Inc., 1998).

Simandl, J. and Svrcek, W.Y., Comput. chem. Engng. 15 (1991), 337. Skogestad, S., Wittgens, B„ Litto, R. and Sorensen, E., AIChEJ. 43 (1997), 971. Sorensen, E., Macchietto, S., Start, G., and Skogestad, S., Comput. chem. Engng. 20 (1996b), 1491.

Sorensen, E. and Skogestad, S., Chem. Eng. Sei. 51 (1996a), 4949. Sorensen, E., and Skogestad, S., J. Proc. Cont. 4 (1996c), 205. Sundaram, S. and Evans, L.B., I EC Res, 32 (1993a), 511. Sundaram, S. and Evans, L.B., I EC Res, 32 (1993b), 500.

vanLith, P.F., Betlem, B.H.L., Roffel, B„ Comput. chem. Engng. 27 (2003), 1021. Wajge, R.M., Wilson, J.M., Pekny, J.F. and Reklaitis, G.V., 1EC Res. 36 (1997), 1738.

Was this article helpful?

0 0

Post a comment