Ind. Eng.chem .res.2001 40 1566-1574

x xi"

xi xFA xMe excess Gibbs energy molar enthalpy of pure component i acetic acid

1-hexanol hexyl acetate hemiformal poly(oxymethylene) hemiformal with n CH2O segments component index phase index chemical equilibrium constant (thermodynamically consistent) mass action law chemical equilibrium constant chemical equilibrium constant like term in activity coefficients molality

1 mol/kg solvent middle group methanol methyl acetate methylene glycol poly(oxymethylene) glycol with n CH2O segments methanol mole number number of CH2O segments number of components number of theoretical stages number of stirred tank reactors not in phase equilibrium nuclear magnetic resonance pressure normalization pressure vapor pressure number of phases reaction index universal gas constant (8.314 J/(mol K))

number of reactions reaction molar entropy of pure component i temperature molar volume of pure component i partial molar volume of component i at infinite dilution water composition of phase solvent composition (composition for infinite dilution ofcomponent i) mole fraction of component i overall formaldehyde mole fraction (especially: liquid phase) overall methanol mole fraction xw y

Pfa overall water mole fraction gas-phase composition overall formaldehyde mole fraction in vapor phase

Greeks

Vi Vi V Mi vi fugacity coefficient of component i activity coefficient of component i

Murphree efficiency chemical potential of component i stoichiometric coefficient of component i in reaction r cation stoichiometric coefficient anion stoichiometric coefficient

Superscripts c j m pure liq. pure id. gas r s 0

referring to normalization using molarity phase referring to normalization using molality referring to normalization according to Raoult's law referring to normalization according to pure ideal gas at T, po reaction saturation (pure component) referring to normalization referring to normalization with yi ^ 1 at infinite dilution referring to infinite dilution liquid phase gas phase

Subscripts i r k solv component reaction dissolved gas solvent

References

1 R. Taylor, R. Krishna, Chem. Eng. Sei., 2000, 55, 5183-5229.

2 L. Götze, PhD Dissertation, Universität Oldenburg, 1998.

3 P. Moritz, H. Hasse, Chem. Eng. Sei., 1999, 54, 1367-1374.

4 P. Moritz, PhD Dissertation, Universität Stuttgart, 2001.

5 B. Bessling, J. L. Löning, A. Ohlig-schläger, G. Schembecker, K. Sundmacher, Chem. Eng. Technol., 1998, 21 393-400.

6 T. Pöpken, S. Steinigeweg, J. Gmeh-ling, Ind. Eng. Chem. Res., 2001, 40, 1566-1574.

7 T. Pöpken, R. Geisler, L. Götze, A. Brehm, P. Moritz, J. Gmehling, Cham. Eng. Technol., 1999, 21, 401-404.

8 R. C. Reid, J. M. Prausnitz, B. E. Poling, The Properties of Gases and Liquids, 4th edn. McGraw-Hill, New York, 1987.

9 R. Taylor, R. Krishna, Multicomponent Mass Transfer, Wiley, New York, 1993.

10 S. M. Walas, Phase Equilibria in Chemical Engineering, Butterworth-Heinemann, Boston, 1985.

11 J. M. Prausnitz, R. N. Lichtenthaler,

E. G. de Azevedo, Molecular Thermodynamics of Fluid-Phase Equilibria, 2nd edn, Prentice-Hall, Englewood Cliffs, 1986.

12 M. Lisal, I. Nezbeda, W.R. Smith, f. Chem. Phys., 1999, 110, 8597-8604.

13 M. Lisal, W. R. Smith, I. Nezbeda, AIChEf., 2000, 46, 866-875.

14 D.R. Stull, F.W. Edgar, G.C. Sinke, The Chemical Thermodynamics of Organic Compounds, Wiley, New York, 1969.

15 M. Frenkel, X. Hong, R. C. Wilhoit (eds.), TRC Thermodynamic Tables -Non-Hydrocarbons, National Standard Reference Data Series, National Institute of Standards and Technology (NIST), ISBN 1-886843-19-8, 2000.

16 M. Frenkel, X. Hong, R. C. Wilhoit (eds.), TRC Thermodynamic Tables -Hydrocarbons, National Standard Reference Data Series, National Institute of Standards and Technology (NIST), ISBN 1-883400-06-6, 2000.

17 I. Prigogine, R. Defay, Chemical Thermodynamics, Longmans, Green & Co., London, 1954.

18 S. Ung, M. Doherty, Chem. Eng. Sci., 1995, 50, 23-48.

19 S. Ung, M. Doherty, AIChEf., 1995, 41, 2382-2392.

21 H. Hasse, G. Maurer, Fluid Phase Equilibria 1991, 64, 185-199.

22 M. Albert, PhD Dissertation, Universi-töt Kaiserslautern, 1998.

23 M. Albert, B. C. Coto Garcia, C. Kuhnert, R. Peschla, G. Maurer, AIChE f., 2000, 46, 1676-1687.

24 I. Hahnenstein, M. Albert, H. Hasse, C. G. Kreiter, G. Maurer, Ind. Eng. Chem. Res., 1995, 34, 440-450.

25 H. Hasse, Anwendungen der Spektroskopie in thermodynamischen Untersuchungen fluider Mischungen, FortschrittBerichte VDI, Reihe 3: Verfahrenstechnik, Nr. 458, VDI Verlag, Düsseldorf, 1996.

26 N. C. Patel, M. A. Young, Fluid Phase Equilibria, 1993, 82, 79-92.

27 W. Arlt, Fluid Phase Equilibria, 1999, 158-160, 973-977.

28 J. Krissmann, M. A. Siddiqi, K. Lucas, Chem. Ing. Tech., 1996, 68, 1598-1602.

29 W. J. Rogers, J. A. Bullin, R. R. Davison, R. E. Frazier, K. N. Marsh, AIChE f., 1997, 43, 3223-3231.

30 D. Roederer, Untersuchungen zum Dampf-Flüssig-Gleichgewicht und zur Reaktionskinetik zweier Isomere für die Auslegung einer Reaktivrektifikationsan-lage, Ph. Dissertation, ETH Zürich, 1999.

31 L. Rafflenbeul, H. Hartmann, Chemie Technik, 1978, 7, 145-148.

32 H. Hasse, I. Hahnenstein, G. Maurer, AIChEf., 1990, 36, 1807-1814.

33 A. Reichl, U. Daiminger, A. Schmidt, M. Davies, U. Hoffmann, C. Brinkmeier, C. Reder, W. Marquardt, Fluid Phase Equilibria, 1998, 153, 113-134.

34 M. Hirata, H. Komatsu, Kagaku Ko-gaku, 1966, 4, 242-245.

35 Y. W. Kang,, Y. Y. Lee, W. K. Lee, f. Chem. Eng. fapan, 1992, 25, 649-655.

36 L. S. Lee, M. Z. Kuo, Fluid Phase Equilibria, 1996, 123, 147-165.

37 L. S. Lee, S. J. Liang, Fluid Phase Equilibria, 1998, 149, 57-74.

38 L. S. Lee, R. G. Lin, Fluid Phase Equilibria, 1999, 165, 261-278.

Was this article helpful?

0 0

Post a comment