Hengstebeck Diagrams

Preface xv Acknowledgments xix

Chapter 1. introduction to Distillation 1

1.1 Distillation Background 2

1.1.1 What Is Distillation? 2

1.1.2 Why Distillation? 2 Vapor-Uquid Equilibrium (VLS) 3

1.2.1 K-Value and Relative Volatility 3

1.2.2 Ideal and Non-Ideal Systems 6

1.2.3 Effect of Temperature, Pressure and Composition on K-Values and Volatility 7

1.2.4 Phase Diagrams 11

1.2.5 Calculation of Bubble Points and Dew Points 13

1.2.6 Azeotropes 14

1.3 Nomenclature 14

1.3.1 English Letters 14

1.3.2 Greek Letters 16

1.3.3 Subscripts 16

1.3.4 Superscripts 16

1.4 References 16

OHpter2. Key Fractionation Concepts 19

2.1 Theoretical Stages 20

2.1.1 ideal and Nonideal Stages 20

2.1.2 Stripping, Rectification, and Fractionation 23

2.1.3 Material and Energy Balances 25 2-2 x-y Diagrams 23

2.2.1 McCabe-Thlele Diagrams: Fundamentals 28

2.2.2 Constant Molar Overflow and Other Assumptions 31

2.2.3 McCabe-Thlele Diagrams: Line Equations 34

2.2.4 McCabe-Thlele Diagrams: Construction 39

2.2.5 Optimum Feed Stage and Pinching 42

2.2.6 Minimum Reflux Ratio 47

2.2.7 Minimum Stripping 49

2.2.8 Total Reflux and Minimum Stages so

2.2.9 Allowance for Stage Efficiencies S1

2.2.10 Extension to Complex Columns 51

2.3 Key Concepts of Mult ¡component Distillation 61

2.3.1 Key and Nonkey Components 61

2.3.2 Column Composition and Temperature Profiles 62

2.3.3 Hengstebeck Diagrams: Principles 64

2.3.4 Hengstebeck Diagrams: Construction 67

2.3.5 Minimum Reflux by Hengstebeck Diagram 71

2.3.6 Key Ratio Plots and Retrograde Distillation 72

2.3.7 Best Feed Stage Location 76 2.3.6 Distribution of Non keys (d/b Plots) 77

2.4 Analyzing Computer Simulation Results by Graphical Techniques 79

2.4.1 Use of x-y Diagrams (McCabe-Thlele and Hengstebeck) 79

2.4.2 Use of Key Ratio and d/b Plots 62

2.5 Nomenclature «4

2.5.1 English Letters «4

2.5.2 Greek Letters 65

2.5.3 Subscripts S5

2.6 References 96

Chapter 3. Column Process Design, Optimization, and

Shortcut Calculations 87

3.1 Process Design and Optimization 87

3.1.1 Separation Specification: Requirements and Options 87

3.1.2 Optimizing Product Recovery (Material Balance Optimization) 90

3.1.3 Optimizing Separation (Energy Balance Optimization) 93

3.1.4 Application of Recovery and Separation Optimization 95

3.1.5 Setting Column Pressure 96

3.1.6 Optimum Reflux Ratio 97

3.1.7 Peed Stage Optimization by Computer i0i

3.1.8 Minimum Reflux by Computer 103

3.1.9 Minimum Stages by Computer 10s

3.1.10 Process Design Procedure 105

3.2 Reflux and Stages: Shortcut Methods 106

3.2.1 Minimum Stages 106

3.2.2 Minimum Reflux 109

3.2.3 Minimum Reflux for Systems Containing Distributed Nonkey s no

3.2.4 Extension of the Minimum Reflux Equations 113

3.2.5 Reflux-Stages Relationships 114

3.2.6 Feed Stage Location 11 s

3.2.7 Analysis of Existing Columns: the Smith>Brinkley Method 119

3.2.8 The Analytical x-y Diagram: Smoker's Equation 123

3.2.9 The Jafarey, Douglas, and McAvoy Equation: Design and

Control 126

3.3 Nomenclature 129

3.3.1 English Letters 129

3.3.2 Greek Letters 131

3.3.3 Subscripts 131 3.4 References 131

Chapter 4. Rigorous Distillation Calculations 135

4.1 Basic Concepts 136

4.1.1 Stage and Column Models 136

4.1.2 Basic (MESH) Equations of Rigorous Distillation 140

4.2 Rigorous Computational Methods 144

4.2.1 The Basic Classification of the Methods 144

4.2.2 PreComputer Methods 145

4.2.3 The Strategy of Solution Using a Rigorous Method 14«

4.2.4 Tridlagonal Matrix Method for the Material Balances 149

4.2.5 Bubble-Point (BP) Methods 152

4.2.6 Numerical Methods—the Newton-Rap h son Technique 157

4.2.7 Sum-Rates (SR) Method 161

4.2.8 2A/Newton Methods 163

4.2.9 Global Newton Methods im

4.2.10 Inside-Out Methods 172

4.2.11 Relaxation Methods 180

4.2.12 Homotopy-Continuatlon Methods 183

4.2.13 Nonequllibrlum or Rate Based Methods 187 44 How to Use and Which to Use 192

4.3.1 Hints for Setting Separation Specifications 192

4.3.2 Problems When Setting Simulation Input 194

4.3.3 Recovering from Failures and Analyzing Results 196

4.3.4 Which Method to Use 198

4.3.5 What to Look for in Choosing a Package or Method 201

4.4 Nomenclature 202

4.4.1 English Letters 202

4.4.2 Greek Letters 20«

4.4.3 Subscripts 20e

4.4.4 Superscripts 207

4.5 References 207

4.5.1 General Reviews and Surveys 207

4.5.2 General Sources Used Throughout 207

4.5.3 First Statement of the General Methods 208

4.5.4 Early Methods for Computers 208

4.5.5 Material Balance Methods 208

4.5.6 Thelle-Geddes Oriented (Including Bubble-Point Methods) 208

4.5.7 Sum-Rates or Absorber-Oriented Methods 208

4.5.8 Global Newton Methods 208

4.5.9 Relaxation Methods 209

4.5.10 Instde-Out Algorithms 209

4.5.11 Homotopy Methods 210

4.5.12 Nonequllibrium Models 210

4.5.13 Incorporation of Efficiencies in Rigorous Distillation Calculations 210

4.5.14 Applications of Convergence Methods and Comparisons 210

4.5.15 Program Reference Manuals 211

4.5.16 Numerical Methods 211

4.5.17 Personal Communications 211

Chapter 5. Batch Distillation 213

5.1 Existing Systems 21s

5.1.1 Simple Distillation 21s

5.1.2 Constant Reflux Ratio 221

5.1.3 Varying Reflux Ratio 227

5.1.4 Time and Boil-Up Requirements 233

5.2 New Design—A Case History 242

5.3 Special Note to Readers 256

5.4 References 256

Chapter 6. Tray Design and Operation 259

6.1 The Common Tray Types 260

6.1.1 Description of the Common Tray Types 260

6.1.2 Comparison of the Common Tray Types 262

6.2 Tray Capacity Limits 267

6.2.1 The Classical Hydraulic Model 267

6.2.2 Tray Stability Diagram 268

6.2.3 Definitions of Tray Area, Vapor Load and Liquid Load 268

6.2.4 Tray Flooding Mechanisms 271

6.2.5 Factors Affecting Flooding 273

6.2.6 Entrainment (Jet) Flooding 275

6.2.7 Downcomer Backup Flooding 283

6.2.8 Downcomer Aeration 284

6.2.9 Downcomer Choke Flooding 288

6.2.10 Derating ("System") Factors 291

6.2.11 Entrainment 294

6.2.12 Sieve Tray Weeping 299

6.2.13 Valve Tray Weeping 304

6.2.14 Dumping 308

6.3 Tray Hydraulic Parameters 309

6.3.1 Pressure Drop 309

6.3.2 Dry Pressure Drop 309

6.3.3 Pressure Drop Through the Aerated Liquid 313

6.3.4 Head Loss Under Downcomer Apron 318

6.3.5 Clear Liquid Height and Froth Density 318

6.3.6 Turndown 321

6.4 Flow Regimes on Trays 322

6.4.1 The Common Flow Regimes 322

6.4.2 The Flow Regime Likely to Exist on Industrial Trays 326

6.4.3 Transition Between Flow Regimes 332

6.4.4 Implications of the Spray Regime for Design and Operation 333

6.4.5 Implications of the Emulsion Regime for Design and Operation 335

6.5 Column Sizing 336

6.5.1 General Considerations 336

6.5.2 Tray Sizing Example and Initial Steps 337

6.5.3 Preliminary Determination of Tower Diameter 338

6.5.4 Preliminary Tray Layout 340

6.5.5 First Trial 344

6.5.6 Second Trial 346

6.5.7 Hydraulic Checks, Second Trial 349

6.5.8 Third Trial 353

6.5.9 Turndown Checks (Based on Third Trial) 357

6.5.10 Concluding Comments on Design Philosophy seo

6.5.11 Tray Design Summary 362

6.5.12 Hydraulic Performance Summary 362

Chapter 7. Tray Efficiency 365

7.1 Tray Efficiency Fundamentals 36$

7.1.1 Definitions 365

7.1.2 Point Efficiency Fundamentals 387

7.1.3 Tray Efficiency Fundamentals 370

7.2 Tray Efficiency Prediction 372

7.2.1 Theoretical Prediction Methods 372

7.2.2 Empirical Prediction Methods 37«

7.2.3 Prediction by Data Interpolation 378

7.2.4 Tray Efficiency Calculation Example 378

7.3 Tray Efficiency Scaleup 379

7.3.1 Effect of Errors in VLE on Efficiency 379

7.3.2 Liquid Flow Patterns and Maldistribution on Urge Trays 362

7.3.3 Effect of Tray Maldistribution on Efficiency 388

7.3.4 Other Factors Affecting Tray Efficiency 389

7.3.5 Tray Efficiency in Mult ¡component Separations 394

7.3.6 Efficiency Scaleup: Process Factors 400

7.3.7 Efficiency Scaleup: Equipment Factors 405

7.4 Nomenclature for Chapters 6 and 7 409

7.4.1 English Letters 409

7.4.2 Greek Letters 413

7.4.3 Subscripts 414

7.5 References for Chapters 6 and 7 415

Chapter 8. Packing Design and Operation 421

8.1 Packing Types 421

8.1.1 Classification 421

8.1.2 Packing Objectives 421

8.1.3 Types of Random Packings 423

8.1.4 Comparison of Random Packings from Different Generations 434

8.1.5 Packing Material—Random Packings 439

8.1.6 Structured Packing Evolution 441

8.1.7 Types of Wire-Mesh Structured Packings 441

8.1.8 Geometrical Features of Corrugated Structured Packings 444

8.1.9 Types of Corrugated Structured Packings 448

8.1.10 Structured Packings Versus Random Packings 453

8.1.11 Considerations for Specifying Structured Packings 461

6.1.12 Typesof Grids 463

8.1.13 Grid Versus Other Packings 466

8.2 Packing Hydraulics 469

8.2.1 Pressure Drop Flow Regimes 469

8.2.2 Efficiency Flow Regimes 471

8.2.3 Flood Point: Concept and Traps 475

8.2.4 Maximum Operational Capacity (MOC): Concept and Traps 476

8.2.5 Pressure Drop: Inherent Limitations and Traps 477

8.2.6 Flood-Point Prediction 479

8.2.7 Maximum Operational Capacity (MOC) Prediction 491

8.2.8 Pressure Drop Prediction by Correlation 492

8.2.9 Pressure Drop Prediction by Interpolation 501

8.2.10 Packing Factors 504

8.2.11 Loading Point 506

8.2.12 Column Sizing Criteria 507

8.2.13 Average Pressure Drop 510

8.2.14 Liquid Holdup 510

8.2.15 Minimum Wetting Rate 511

8.2.16 Underwettlng 615

8.2.17 Minimum Vapor Rate 517

8.3 Comparing Trays and Packings 517

8.3.1 Factors Favoring Packed Columns 518

8.3.2 Factors Favoring Tray Columns 519

Chapter 9. Packing Efficiency and Scaleup 523

9.1 Packing Efficiency 623

9.1.1 The Transfer Unit Concept 623

9.1.2 The HETP Concept 525

9.1.3 Factors Affecting HETP 626

9.1.4 HETP Prediction—Mass Transfer Models 527

9.1.5 HETP Prediction—Rules of Thumb 632

9.1.6 HETP Prediction—Data Interpolation S36

9.2 Maldistribution and Its Effects on Packing Efficiency 537

9.2.1 Effects of Liquid Maldistribution of HETP: An Overview 537

9.2.2 Effect of Maldistribution on Local UV Ratio 537 Ö.2.3 Effect of Lateral Mixing 541

9.2.4 Effect of Uquid Flow NonuniformIty 542

9.2.5 The Zone-Stage Model 546

9.2.6 Empirical Prediction of the Effects of Maldistribution 548

9.2.7 Effect of Vapor Maldistribution on Packing Efficiency 546

9.2.8 Implications of Maldistribution to Packing Design Practice 550

9.3 Packed Tower Scaleup 554

9.3.1 Diameter Considerations 554

9.3.2 Height, Loading, Wetting and Other Considerations 555

9.3.3 Packed Tower Scaleup: Summary and Recommendations 558

9.4 Packed Column Sizing 559

9.4.1 Strategy 559

9.4.2 Column Sizing Example 560

9.4.3 Column Sizing Example: First Trial 561

9.4.4 Column Sizing Example: Second Trial 564

9.4.5 Column Sizing Example: Design Checks 566

9.4.6 Column Sizing Example: Design and Performance Summary S70

9.4.7 Concluding Comments on Design Philosophy 571

9.4.8 Column Sizing Example: Speculation on Suppliers' Modifications to the Preliminary Design 572

9.4.9 Column Sizing Example: Trays or Packings? 574

9.5 Nomenclature (Chapters 8 and 9) 575

9.5.1 English Letters 578

9.5.2 Greek Letters 578

9.5.3 Subscripts 579

9.6 References (Chapters 8 and 9) 580

Chapter 10. Packing Capacity and Pressure Drop GPDC Interpolation

Charts Atlas 585

10.1 Application Guidelines for Using the GPDC Interpolation Charts 586

10.2 A Guide to the GPDC Interpolation Charts 588

10.3 Acknowledgment 651

10.4 References est

Chapter 11. Packing Efficiency Data 653

11.1 Random Packings 653

11.1.1 Interpolation Procedure 6S3

11.1.2 Legend for Table 11.1 Comments 654

11.2 Structured Packings 670

11.2.1 Efficiency Data Plots 670

11.2.2 Interpolation Procedure 670

11.2.3 Legend for Table 11.2 Comments 671

11.3 References 691

Name Index 693 Subject Index 697

Relaxation Audio Sounds Log Cabin Fire

Relaxation Audio Sounds Log Cabin Fire

This is an audio all about guiding you to relaxation. This is a Relaxation Audio Sounds with sounds from Log Cabin Fire.

Get My Free MP3 Audio


Responses

  • donald
    How to plot graph hengstebeck?
    8 years ago

Post a comment